Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Stomatal Sensitivity to Vapor Pressure Deficit and the Loss of Hydraulic Conductivity Are Coordinated in Populus euphratica, a Desert Phreatophyte Species.

Identifieur interne : 000109 ( Main/Exploration ); précédent : 000108; suivant : 000110

Stomatal Sensitivity to Vapor Pressure Deficit and the Loss of Hydraulic Conductivity Are Coordinated in Populus euphratica, a Desert Phreatophyte Species.

Auteurs : Da-Yong Fan [République populaire de Chine] ; Qing-Lai Dang [Canada] ; Cheng-Yang Xu [République populaire de Chine] ; Chuang-Dao Jiang [République populaire de Chine] ; Wang-Feng Zhang [République populaire de Chine] ; Xin-Wu Xu [République populaire de Chine] ; Xiao-Fang Yang [République populaire de Chine] ; Shou-Ren Zhang [République populaire de Chine]

Source :

RBID : pubmed:32922423

Abstract

There are considerable variations in the percentage loss of hydraulic conductivity (PLC) at mid-day minimum water potential among and within species, but the underpinning mechanism(s) are poorly understood. This study tested the hypothesis that plants can regulate leaf specific hydraulic conductance (Kl) via precise control over PLC under variable ΔΨ (water potential differential between soil and leaf) conditions to maintain the -m/b constant (-m: the sensitivity of stomatal conductance to VPD; b: reference stomatal conductance at 1.0 kPa VPD), where VPD is vapor pressure deficit. We used Populus euphratica, a phreatophyte species distributed in the desert of Northwestern China, to test the hypothesis. Field measurements of VPD, stomatal conductance (gs), gs responses to VPD, mid-day minimum leaf water potential (Ψlmin), and branch hydraulic architecture were taken in late June at four sites along the downstream of Tarim River at the north edge of the Taklamakan desert. We have found that: 1) the -m/b ratio was almost constant (=0.6) across all the sites; 2) the average Ψ50 (the xylem water potential with 50% loss of hydraulic conductivity) was -1.63 MPa, and mid-day PLC ranged from 62 to 83%; 3) there were tight correlations between Ψ50 and wood density/leaf specific hydraulic conductivity (kl) and between specific hydraulic conductance sensitivity to water potential [d(ks)/dln()] and specific hydraulic conductivity (ks). A modified hydraulic model was applied to investigate the relationship between gs and VPD under variable ΔΨ and Kl conditions. It was concluded that P. euphratica was able to control PLC in order to maintain a relatively constant -m/b under different site conditions. This study demonstrated that branchlet hydraulic architecture and stomatal response to VPD were well coordinated in order to maintain relatively water homeostasis of P. euphratica in the desert. Model simulations could explain the wide variations of PLC across and within woody species that are often observed in the field.

DOI: 10.3389/fpls.2020.01248
PubMed: 32922423
PubMed Central: PMC7456922


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Stomatal Sensitivity to Vapor Pressure Deficit and the Loss of Hydraulic Conductivity Are Coordinated in
<i>Populus euphratica</i>
, a Desert Phreatophyte Species.</title>
<author>
<name sortKey="Fan, Da Yong" sort="Fan, Da Yong" uniqKey="Fan D" first="Da-Yong" last="Fan">Da-Yong Fan</name>
<affiliation wicri:level="3">
<nlm:affiliation>College of Forestry, Beijing Forestry University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Forestry, Beijing Forestry University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dang, Qing Lai" sort="Dang, Qing Lai" uniqKey="Dang Q" first="Qing-Lai" last="Dang">Qing-Lai Dang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Natural Resources Management, Lakehead University, Thunder Bay, ON, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Faculty of Natural Resources Management, Lakehead University, Thunder Bay, ON</wicri:regionArea>
<wicri:noRegion>ON</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xu, Cheng Yang" sort="Xu, Cheng Yang" uniqKey="Xu C" first="Cheng-Yang" last="Xu">Cheng-Yang Xu</name>
<affiliation wicri:level="3">
<nlm:affiliation>College of Forestry, Beijing Forestry University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Forestry, Beijing Forestry University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Chuang Dao" sort="Jiang, Chuang Dao" uniqKey="Jiang C" first="Chuang-Dao" last="Jiang">Chuang-Dao Jiang</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Wang Feng" sort="Zhang, Wang Feng" uniqKey="Zhang W" first="Wang-Feng" last="Zhang">Wang-Feng Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi</wicri:regionArea>
<wicri:noRegion>Shihezi</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xu, Xin Wu" sort="Xu, Xin Wu" uniqKey="Xu X" first="Xin-Wu" last="Xu">Xin-Wu Xu</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>China Meteorological Administration, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>China Meteorological Administration, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yang, Xiao Fang" sort="Yang, Xiao Fang" uniqKey="Yang X" first="Xiao-Fang" last="Yang">Xiao-Fang Yang</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Shou Ren" sort="Zhang, Shou Ren" uniqKey="Zhang S" first="Shou-Ren" last="Zhang">Shou-Ren Zhang</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32922423</idno>
<idno type="pmid">32922423</idno>
<idno type="doi">10.3389/fpls.2020.01248</idno>
<idno type="pmc">PMC7456922</idno>
<idno type="wicri:Area/Main/Corpus">000107</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000107</idno>
<idno type="wicri:Area/Main/Curation">000107</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000107</idno>
<idno type="wicri:Area/Main/Exploration">000107</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Stomatal Sensitivity to Vapor Pressure Deficit and the Loss of Hydraulic Conductivity Are Coordinated in
<i>Populus euphratica</i>
, a Desert Phreatophyte Species.</title>
<author>
<name sortKey="Fan, Da Yong" sort="Fan, Da Yong" uniqKey="Fan D" first="Da-Yong" last="Fan">Da-Yong Fan</name>
<affiliation wicri:level="3">
<nlm:affiliation>College of Forestry, Beijing Forestry University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Forestry, Beijing Forestry University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dang, Qing Lai" sort="Dang, Qing Lai" uniqKey="Dang Q" first="Qing-Lai" last="Dang">Qing-Lai Dang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Natural Resources Management, Lakehead University, Thunder Bay, ON, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Faculty of Natural Resources Management, Lakehead University, Thunder Bay, ON</wicri:regionArea>
<wicri:noRegion>ON</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xu, Cheng Yang" sort="Xu, Cheng Yang" uniqKey="Xu C" first="Cheng-Yang" last="Xu">Cheng-Yang Xu</name>
<affiliation wicri:level="3">
<nlm:affiliation>College of Forestry, Beijing Forestry University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Forestry, Beijing Forestry University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Chuang Dao" sort="Jiang, Chuang Dao" uniqKey="Jiang C" first="Chuang-Dao" last="Jiang">Chuang-Dao Jiang</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Wang Feng" sort="Zhang, Wang Feng" uniqKey="Zhang W" first="Wang-Feng" last="Zhang">Wang-Feng Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi</wicri:regionArea>
<wicri:noRegion>Shihezi</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xu, Xin Wu" sort="Xu, Xin Wu" uniqKey="Xu X" first="Xin-Wu" last="Xu">Xin-Wu Xu</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>China Meteorological Administration, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>China Meteorological Administration, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yang, Xiao Fang" sort="Yang, Xiao Fang" uniqKey="Yang X" first="Xiao-Fang" last="Yang">Xiao-Fang Yang</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Shou Ren" sort="Zhang, Shou Ren" uniqKey="Zhang S" first="Shou-Ren" last="Zhang">Shou-Ren Zhang</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">There are considerable variations in the percentage loss of hydraulic conductivity (
<i>PLC</i>
) at mid-day minimum water potential among and within species, but the underpinning mechanism(s) are poorly understood. This study tested the hypothesis that plants can regulate leaf specific hydraulic conductance (
<i>K</i>
<sub>l</sub>
)
<i>via</i>
precise control over
<i>PLC</i>
under variable Δ
<i>Ψ</i>
(water potential differential between soil and leaf) conditions to maintain the
<i>-m/b</i>
constant (
<i>-m</i>
: the sensitivity of stomatal conductance to
<i>VPD</i>
;
<i>b</i>
: reference stomatal conductance at 1.0 kPa
<i>VPD</i>
), where
<i>VPD</i>
is vapor pressure deficit. We used
<i>Populus euphratica</i>
, a phreatophyte species distributed in the desert of Northwestern China, to test the hypothesis. Field measurements of
<i>VPD</i>
, stomatal conductance (
<i>g</i>
<sub>s</sub>
),
<i>g</i>
<sub>s</sub>
responses to
<i>VPD</i>
, mid-day minimum leaf water potential (
<i>Ψ</i>
<sub>lmin</sub>
), and branch hydraulic architecture were taken in late June at four sites along the downstream of Tarim River at the north edge of the Taklamakan desert. We have found that: 1) the
<i>-m/b</i>
ratio was almost constant (=0.6) across all the sites; 2) the average
<i>Ψ</i>
<sub>50</sub>
(the xylem water potential with 50% loss of hydraulic conductivity) was
<i>-</i>
1.63 MPa, and mid-day
<i>PLC</i>
ranged from 62 to 83%; 3) there were tight correlations between
<i>Ψ</i>
<sub>50</sub>
and wood density/leaf specific hydraulic conductivity (
<i>k</i>
<sub>l</sub>
) and between specific hydraulic conductance sensitivity to water potential [d(
<i>k</i>
<sub>s</sub>
)/dln(
<i></i>
)] and specific hydraulic conductivity (
<i>k</i>
<sub>s</sub>
). A modified hydraulic model was applied to investigate the relationship between
<i>g</i>
<sub>s</sub>
and
<i>VPD</i>
under variable Δ
<i>Ψ</i>
and
<i>K</i>
<sub>l</sub>
conditions. It was concluded that
<i>P. euphratica</i>
was able to control
<i>PLC</i>
in order to maintain a relatively constant
<i>-m/b</i>
under different site conditions. This study demonstrated that branchlet hydraulic architecture and stomatal response to
<i>VPD</i>
were well coordinated in order to maintain relatively water homeostasis of
<i>P. euphratica</i>
in the desert. Model simulations could explain the wide variations of
<i>PLC</i>
across and within woody species that are often observed in the field.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32922423</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>11</Volume>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Stomatal Sensitivity to Vapor Pressure Deficit and the Loss of Hydraulic Conductivity Are Coordinated in
<i>Populus euphratica</i>
, a Desert Phreatophyte Species.</ArticleTitle>
<Pagination>
<MedlinePgn>1248</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2020.01248</ELocationID>
<Abstract>
<AbstractText>There are considerable variations in the percentage loss of hydraulic conductivity (
<i>PLC</i>
) at mid-day minimum water potential among and within species, but the underpinning mechanism(s) are poorly understood. This study tested the hypothesis that plants can regulate leaf specific hydraulic conductance (
<i>K</i>
<sub>l</sub>
)
<i>via</i>
precise control over
<i>PLC</i>
under variable Δ
<i>Ψ</i>
(water potential differential between soil and leaf) conditions to maintain the
<i>-m/b</i>
constant (
<i>-m</i>
: the sensitivity of stomatal conductance to
<i>VPD</i>
;
<i>b</i>
: reference stomatal conductance at 1.0 kPa
<i>VPD</i>
), where
<i>VPD</i>
is vapor pressure deficit. We used
<i>Populus euphratica</i>
, a phreatophyte species distributed in the desert of Northwestern China, to test the hypothesis. Field measurements of
<i>VPD</i>
, stomatal conductance (
<i>g</i>
<sub>s</sub>
),
<i>g</i>
<sub>s</sub>
responses to
<i>VPD</i>
, mid-day minimum leaf water potential (
<i>Ψ</i>
<sub>lmin</sub>
), and branch hydraulic architecture were taken in late June at four sites along the downstream of Tarim River at the north edge of the Taklamakan desert. We have found that: 1) the
<i>-m/b</i>
ratio was almost constant (=0.6) across all the sites; 2) the average
<i>Ψ</i>
<sub>50</sub>
(the xylem water potential with 50% loss of hydraulic conductivity) was
<i>-</i>
1.63 MPa, and mid-day
<i>PLC</i>
ranged from 62 to 83%; 3) there were tight correlations between
<i>Ψ</i>
<sub>50</sub>
and wood density/leaf specific hydraulic conductivity (
<i>k</i>
<sub>l</sub>
) and between specific hydraulic conductance sensitivity to water potential [d(
<i>k</i>
<sub>s</sub>
)/dln(
<i></i>
)] and specific hydraulic conductivity (
<i>k</i>
<sub>s</sub>
). A modified hydraulic model was applied to investigate the relationship between
<i>g</i>
<sub>s</sub>
and
<i>VPD</i>
under variable Δ
<i>Ψ</i>
and
<i>K</i>
<sub>l</sub>
conditions. It was concluded that
<i>P. euphratica</i>
was able to control
<i>PLC</i>
in order to maintain a relatively constant
<i>-m/b</i>
under different site conditions. This study demonstrated that branchlet hydraulic architecture and stomatal response to
<i>VPD</i>
were well coordinated in order to maintain relatively water homeostasis of
<i>P. euphratica</i>
in the desert. Model simulations could explain the wide variations of
<i>PLC</i>
across and within woody species that are often observed in the field.</AbstractText>
<CopyrightInformation>Copyright © 2020 Fan, Dang, Xu, Jiang, Zhang, Xu, Yang and Zhang.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Fan</LastName>
<ForeName>Da-Yong</ForeName>
<Initials>DY</Initials>
<AffiliationInfo>
<Affiliation>College of Forestry, Beijing Forestry University, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dang</LastName>
<ForeName>Qing-Lai</ForeName>
<Initials>QL</Initials>
<AffiliationInfo>
<Affiliation>Faculty of Natural Resources Management, Lakehead University, Thunder Bay, ON, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Cheng-Yang</ForeName>
<Initials>CY</Initials>
<AffiliationInfo>
<Affiliation>College of Forestry, Beijing Forestry University, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jiang</LastName>
<ForeName>Chuang-Dao</ForeName>
<Initials>CD</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Wang-Feng</ForeName>
<Initials>WF</Initials>
<AffiliationInfo>
<Affiliation>The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Xin-Wu</ForeName>
<Initials>XW</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>China Meteorological Administration, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Xiao-Fang</ForeName>
<Initials>XF</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Shou-Ren</ForeName>
<Initials>SR</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>08</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">hydraulic model</Keyword>
<Keyword MajorTopicYN="N">leaf specific hydraulic conductance</Keyword>
<Keyword MajorTopicYN="N">stomatal conductance</Keyword>
<Keyword MajorTopicYN="N">water homeostasis</Keyword>
<Keyword MajorTopicYN="N">xylem cavitation</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>04</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>07</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>9</Month>
<Day>14</Day>
<Hour>5</Hour>
<Minute>50</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>9</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>9</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32922423</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2020.01248</ArticleId>
<ArticleId IdType="pmc">PMC7456922</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Tree Physiol. 2007 Apr;27(4):621-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17242003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2000 Sep;87(9):1287-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10991900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2001 Feb;126(4):457-461</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28547229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2019 Oct;224(1):21-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31069803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 Jul;32(7):828-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19220781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1988 Nov;88(3):574-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16666351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Chang Biol. 2018 Jul;24(7):2929-2938</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29350812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Nov 18;9(11):e111751</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25406088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Nov;172(3):1657-1668</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27613852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 May;30(5):559-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17407534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1965 Apr 16;148(3668):339-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17832103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Mar;155(3):1051-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21239620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Jan;209(1):123-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26378984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2017 Jan 31;37(1):18-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28173481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Plant Biol. 2004 Jun;31(5):429-439</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32688915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 Dec;30(12):1599-609</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17927695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1997 Aug-Sep;17(8_9):521-535</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14759825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Jan;63(2):1057-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22039297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1992 Oct;100(2):605-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16653035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2020 Apr;168(4):758-761</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32237154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2002 Feb;53(367):195-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11807122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2005 Aug;56(418):2003-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15967780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2017 Feb;173(2):1197-1210</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28049739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2013 Nov;36(11):1938-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23701011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2018 Jun;558(7711):531-539</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29950621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2013 Jan;36(1):103-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22690910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1998 Aug-Sep;18(8_9):589-593</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2019 Jan 30;10:69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30804962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2009 Jul;29(7):879-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19429900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2013 Dec;36(12):2163-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23639077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2015 Jul;38(7):1233-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25444560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Change Biol Bioenergy. 2018 Aug;10(8):592-607</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30174726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Nov 29;491(7426):752-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23172141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Dec;172(4):2261-2274</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27733514</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
<li>République populaire de Chine</li>
</country>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Fan, Da Yong" sort="Fan, Da Yong" uniqKey="Fan D" first="Da-Yong" last="Fan">Da-Yong Fan</name>
</noRegion>
<name sortKey="Jiang, Chuang Dao" sort="Jiang, Chuang Dao" uniqKey="Jiang C" first="Chuang-Dao" last="Jiang">Chuang-Dao Jiang</name>
<name sortKey="Xu, Cheng Yang" sort="Xu, Cheng Yang" uniqKey="Xu C" first="Cheng-Yang" last="Xu">Cheng-Yang Xu</name>
<name sortKey="Xu, Xin Wu" sort="Xu, Xin Wu" uniqKey="Xu X" first="Xin-Wu" last="Xu">Xin-Wu Xu</name>
<name sortKey="Xu, Xin Wu" sort="Xu, Xin Wu" uniqKey="Xu X" first="Xin-Wu" last="Xu">Xin-Wu Xu</name>
<name sortKey="Yang, Xiao Fang" sort="Yang, Xiao Fang" uniqKey="Yang X" first="Xiao-Fang" last="Yang">Xiao-Fang Yang</name>
<name sortKey="Zhang, Shou Ren" sort="Zhang, Shou Ren" uniqKey="Zhang S" first="Shou-Ren" last="Zhang">Shou-Ren Zhang</name>
<name sortKey="Zhang, Wang Feng" sort="Zhang, Wang Feng" uniqKey="Zhang W" first="Wang-Feng" last="Zhang">Wang-Feng Zhang</name>
</country>
<country name="Canada">
<noRegion>
<name sortKey="Dang, Qing Lai" sort="Dang, Qing Lai" uniqKey="Dang Q" first="Qing-Lai" last="Dang">Qing-Lai Dang</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000109 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000109 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32922423
   |texte=   Stomatal Sensitivity to Vapor Pressure Deficit and the Loss of Hydraulic Conductivity Are Coordinated in Populus euphratica, a Desert Phreatophyte Species.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32922423" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020